Le changement climatique pourrait favoriser le développement du plancton de petite taille en Méditerranée Nord-Occidentale

Observatoire des Sciences de l’Univers (OSU) Institut Pythéas - 04/11/2014 09:45:00


Une équipe constituée de chercheurs du Laboratoire d'études en géophysique et océanographie spatiales (LEGOS/OMP, UPS / CNRS / CNES / IRD), du Laboratoire d'aérologie (LA/OMP, UPS / CNRS), de l'Institut méditerranéen d'océanographie (MIO/PYTHÉAS, CNRS / Université du Sud - Toulon - Var / IRD / Université Aix-Marseille) et du Groupe d'étude de l'atmosphère météorologique (CNRM-GAME, Météo-France / CNRS) a examiné, par modélisation à l'aide d'un modèle couplé hydrodynamique - biogéochimie, la réponse de l'écosystème planctonique de Méditerranée Nord-Occidentale à l'évolution des conditions atmosphériques et hydrodynamiques d'ici la fin du XXIe siècle. La contribution de cet écosystème au stockage du carbone ne montrerait pas de changement significatif. En revanche, le réchauffement et l'appauvrissement en sels nutritifs de la couche de surface favoriseraient le développement du plancton de petite taille. Il ressort également que le choix des conditions biogéochimiques initiales et aux frontières imposées au modèle couplé induit de fortes incertitudes.

La Méditerranée a été identifiée comme l'un des "points chauds" du changement climatique car compte tenu de sa petite taille, les impacts des variations climatiques sur la circulation océanique et les écosystèmes marins se ressentent rapidement sur l'ensemble du bassin.

En Méditerranée Nord-Occidentale, l'une des zones biologiquement les plus productives de Méditerranée, la convection profonde est l'un des mécanismes hydrodynamiques clefs :
. en hiver, les épisodes de vent du nord (Mistral et Tramontane) y provoquent un refroidissement, et donc une densification, des eaux de surface, induisant un fort mélange vertical de la colonne d'eau qui permet d'apporter à la surface les sels nutritifs initialement présents dans les couches profondes de l'océan ;
. au printemps, le mélange cesse et la chlorophylle peut de nouveau se développer par photosynthèse dans la couche de surface enrichie en nutritifs et stabilisée ; c'est le "bloom" phytoplanctonique (voir nouvelle du 10 juin 2014).

Or la plupart des études de modélisation prévoient un affaiblissement du mélange vertical hivernal et un réchauffement de la couche de surface d'ici la fin du XXIe siècle en Méditerranée.
Quel impact cette évolution aura-t-elle sur l'écosystème planctonique ? Cette question est importante car le plancton joue un rôle majeur dans la biodiversité et les ressources halieutiques locales, en tant que premier maillon de la chaine alimentaire marine, ainsi que dans le climat global via sa contribution à la séquestration océanique du carbone.

Cycle annuel de la concentration en carbone (mmolC.m-3) des groupes planctoniques de petite taille (pico-phytoplancton, nano-zooplancton et bactéries) et du carbone organique dissous (COD). L'enveloppe bleue (rouge) représente le groupe des 7 années de la période 1961-1990 (respectivement 2070-2099). Le cadre au-dessus des courbes donne la valeur de la p-value : si celle-ci est inférieure à 0,05 (zones grisées), la différence entre les périodes future et présente est significative. Pour comprendre la réponse de l'écosystème planctonique de Méditerranée Nord-Occidentale aux variabilités atmosphérique et hydrodynamique à plus ou moins long terme, des chercheurs du LEGOS, du LA, du MIO et du GAME ont réalisé deux jeux de sept simulations annuelles représentatives respectivement des périodes 1961-1990 et 2070-2099 au moyen d'un modèle numérique couplé hydrodynamique (SYMPHONIE) - biogéochimie (Eco3M).

De ces simulations, il ressort que l'affaiblissement du mélange vertical entre le XXe et la fin du XXIe siècle conduirait à une diminution de la disponibilité en sels nutritifs et qu'en parallèle, le réchauffement de la couche de surface provoquerait une augmentation de la production primaire brute (qui dépend de la température), c'est-à-dire de la fixation de carbone par photosynthèse chlorophyllienne. Cette combinaison de l'appauvrissement nutritif et de l'augmentation de la production primaire donnerait lieu à une augmentation de l'exsudation phytoplanctonique, un processus permettant aux organismes phytoplanctoniques de se "débarrasser" de leur trop-plein de carbone, par rapport aux autres éléments chimiques (azote, phosphore, silicium), sous forme de carbone organique dissous (COD) (perte de biomasse). La forte augmentation de concentration en COD qui en découlerait favoriserait alors le développement de bactéries [1] consommatrices de COD et productrices d'ammonium, et conduirait ainsi à une augmentation de la biomasse du pico-phytoplancton (le plus petit groupe de phytoplancton qui consomme préférentiellement de l'ammonium) et du nano-zooplancton (le plus petit groupe de zooplancton qui consomme bactéries et pico-phytoplancton). Au final, seuls les groupes planctoniques de petite taille (pico-phytoplancton, nano-zooplancton et bactéries) subiraient une augmentation significative de leur biomasse entre le XXe et la fin du XXIe siècle, une évolution qui induirait une modification de la composition de l'écosystème planctonique mais pas d'augmentation de la biomasse globale, la biomasse des groupes de petite taille ne représentant qu'une faible fraction de la biomasse totale.
En outre, la contribution de cet écosystème au cycle du carbone ne subirait pas de changement significatif entre les périodes présente et future. En effet, les simulations montrent :
que l'augmentation du rejet de dioxyde de carbone, en grande partie lié à la respiration bactérienne, compense presque exactement celle de la fixation liée à la production primaire, et que donc la fixation nette de dioxyde de carbone par l'écosystème reste inchangée ;
que l'affaiblissement du transport vertical des masses d'eau est compensé par l'augmentation de leur concentration en COD, et que donc l'export en profondeur de carbone organique ne varie pas de façon significative.

Les chercheurs ont également effectué des exercices de sensibilité pour évaluer l'influence des différentes sources d'incertitudes associées à la stratégie de modélisation mise en oeuvre. Les incertitudes associées au choix des conditions biogéochimiques initiales et aux frontières sont très élevées : elles peuvent atteindre 70 % et sont donc du même ordre ou d'un ordre de grandeur supérieur à celles associées à la variabilité interannuelle et à l'évolution à long terme de l'écosystème. Quant aux incertitudes liées au choix du forçage atmosphérique de surface [flux de chaleur, d'eau (évaporation et précipitation) et de quantité de mouvement (vent)], du forçage hydrologique et du scénario socio-économique, elles restent inférieures à 7 %, tandis que celle liée au forçage hydrodynamique peut aller jusqu'à 30 %, les évolutions simulées entre présent et futur allant toujours dans le même sens quel que soit le forçage considéré.